您现在的位置:首页 > 知识库 > 能源 >优化策略及其热能工程应用 英文版 李振哲等著 2016年版
优化策略及其热能工程应用 英文版 李振哲等著 2016年版

优化策略及其热能工程应用 英文版 李振哲等著 2016年版

资料大小: 20.44 MB
文档格式: PDF文档
资料语言: 英文版
资料类别: 能源
更新日期: 2022-10-28
下载说明:
推荐信息: 热能   策略   英文   及其   优化

本地下载(30点)  备用下载(30点)

内容简介
优化策略及其热能工程应用 英文版
作者: 李振哲等著
出版时间:2016年版
内容简介
  《优化策略及其热能工程应用(英文版)》以车用燃料电池系统、车用蓄电池散热系统、热处理用真空炉、热成形加热系统为应用对象,系统地阐明优化模型、全局优化、多目标优化策略,并进行了不同方法之间的比较研究。首先,介绍基于解析解、分析数据库、响应面法、*小二乘法等理论的优化模型,探讨提高优化效率的途径。然后,说明基于遗传算法、梯度法和实验设计法、遗传算法和梯度法的全局优化策略,讨论得到全局优化结果的可靠有效方法。*后,阐述基于线性加权法、理想点法、宽容序列法的多目标优化策略,揭示多目标优化策略的实质。《优化策略及其热能工程应用(英文版)》将为优化工程实际问题提供坚实的理论基础。
目录
Introduction to research team
Preface
Nomenclature
Greek symbols
Subscripts
1.Introduction
1.1 Research background
1.2 Design process
1.3 Optimization algorithm
1.4 Classification of optimization problem
2.Modeling strategies for optimization
2.1 Modeling strategy based on finite concept
2.1.1 Introduction to research field
2.1.2 Analysis model
2.1.3 Development of analysis code suitable for preheating process
2.1.3.1 Radiative heat transfer
2.1.3.2 Convective heat transfer
2.1.3.3 Conductive heat transfer
2.1.4 Steady optimization for heater power distribution
2.1.5 Summary
2.2 Modeling strategy based on design of experiments
2.2.1 Introduction to research field
2.2.2 Numerical model and analysis conditions
2.2.3 Comparison of cases having porous material or not
2.2.4 Optimization strategy
2.2.4.1 Concept of Doptimal design
2.2.4.2 Optimization using DOE method
2.2.5 Summary
2.3 Modeling strategy based on analysis database
2.3.1 Introduction to research field
2.3.2 System setup and experimental method
2.3.3 Design of baseline vacuum furnace
2.3.3.1 Definition of shape
2.3.3.2 Comparison of cases nearly vacuum or argon gas
2.3.4 Construction of thermal analysis database
2.3.4.1 Thermal analysis of vacuum furnace
2.3.4.2 Calculation of thermal conductivity
2.3.4.3 Thermal analysis database
2.3.5 Optimal design strategy
2.3.5.1 Classification of problem
2.3.5.2 Process using thermal analysis database
2.3.6 Optimized results
2.3.6.1 Accuracy verification
2.3.6.2 Discussion of results
2.3.6.3 Feasible optimal design
2.3.7 Rebuilding of design method
2.3.8 Summary
2.4 Modeling strategy based on response surface method
2.4.1 Introduction to research field
2.4.2 Dynamic model for fuel cell
2.4.2.1 Cathode mass flow model
2.4.2.2 Anode mass flow model
2.4.2.3 Membrane hydration model
2.4.2.4 Stack voltage model
2.4.2.5 Cathode GDL model
2.4.2.6 Anode GDL model
2.4.3 Model calibration
2.4.4 Optimizatin design using RSM
2.4.4.1 Concept of response surface method
2.4.4.2 Construction of response surface
2.4.4.3 Optimal design with respnse surface
2.4.5 Summary
2.5 Modeling strategy based on analytic method
2.5.1 Optimization using analytic method
2.5.1.1 1-d analytic solution
2.5.1.2 Optimal strategy and results
2.5.2 Optimization using finite difference method
2.5.2.1 Classification of problem
2.5.2.2 Optimal results and discussion
2.5.3 Summary
3.Global optimization strategy
3.1 Global optimization strategy based on genetic algorithm
3.1.1 Construction of fitting function
3.1.2 Discussion of optimization results
3.1.3 Summary
3.2 Global optimization strategy based on DOE and GBM
3.2.1 Model descriptions
3.2.2 Time for obtaining steady state
3.2.3 Setup of fitting function
3.2.4 Global optimization
3.2.5 Summary
4.Multi-objective optimal strategy
4.1 Multi-objective strategy based on Benson method
4.1.1 Parameter study
4.1.2 Optimal strategy based on Benson method
4.1.3 Summary
4.2 Multi-objective strategy based on layered sequence method
4.2.1 Construction of fitting function
4.2.2 Multi-objective global optimization
4.2.3 Summary
4.3 Multi-objective strategy based on linear weighted method
4.3.1 Construction of response surface
4.3.2 Optimal design and discussion
4.3.3 Summary
4.4 Multi-objective strategy based on ideal point method
4.4.1 Optimal heater power distribution
4.4.2 Optimal design using ideal point method
4.4.2.1 Effect of a damaged heater
4.4.2.2 Optimal results and discussion
4.4.3 Summary
5.Conclusions
6.Acknowledgements
References
Index