您现在的位置:首页 > 知识库 > 交通运输 >空天科学与工程系列教材 空天推进 电火箭推进基础 程谋森,李小康,王墨戈 著 2018年版
空天科学与工程系列教材 空天推进 电火箭推进基础 程谋森,李小康,王墨戈 著 2018年版

空天科学与工程系列教材 空天推进 电火箭推进基础 程谋森,李小康,王墨戈 著 2018年版

资料大小: 30.84 MB
文档格式: PDF文档
资料语言: 简体中文
资料类别: 交通运输
更新日期: 2022-07-07
下载说明:
推荐信息: 火箭   教材   小康   系列   推进

本地下载(30点)  备用下载(30点)

内容简介
空天科学与工程系列教材 空天推进 电火箭推进基础
作者: 程谋森,李小康,王墨戈 著
出版时间:2018年版
丛编项: 空天推进系列教材
内容简介
  《电火箭推进基础》侧重介绍电火箭推进原理。在电火箭推进中,推力的产生是依靠电加热、电场电离、电磁力加速、激光电离等装置和技术实现的,与化学推进中的推力产生方式完全不同,也与电动力学、等离子体物理专业中探索基本现象与基础理论的装置和技术不同。随着电火箭推进技术的逐渐成熟和应用任务范围的拓展,电火箭推进已日渐成为航天器推进技术研究的重要分支。关于电火箭推进的原理、发展状态和应用方面的知识,也成为更好地开展空间任务分析与设计的重要基础。《电火箭推进基础》共13章。主要内容包括概论、太空小推力加速任务分析、小推力轨道机动与位置保持、单组元肼推力器、气体放电导论、电弧推力器简化分析、离子推力器、电子轰击式放电室零维模型、霍尔推力器、霍尔推力器稳态一维模型、磁等离子体推力器、磁等离子体推力器简化模型、激光加热推力器。
目录
前言
第1章 概论 1
1.1 航天推进任务需求 1
1.2 太空推力器的典型性能与应用 1
1.2.1 化学推力器 1
1.2.2 电推力器 2
1.3 火箭推进原理回顾 4
参考文献 8
思考与练习题 8
第2章 太空小推力加速任务分析 9
2.1 固定时间的恒定电功率与推力任务 9
2.2 最优推力曲线 12
2.3 用变分法推导最优喷气速度 14
2.4 最优任务时间 18
思考与练习题 21
第3章 小推力轨道机动与位置保持 22
3.1 小推力逃逸的近似速度增量 22
3.2 次最优轨道提升与轨道面改变 24
3.3 卫星调相 28
3.4 地球静止轨道卫星的南北漂移控制 31
参考文献 36
思考与练习题 36
第4章 单组元肼推力器 37
4.1 单组元推进系统概述 37
4.1.1 典型单组元推进剂 37
4.1.2 单组元肼推力器构型与质量模型 37
4.1.3 单组元推进剂供应装置 38
4.1.4 单组元推进系统构型 39
4.2 肼分解推力器 39
4.2.1 肼的基本属性 39
4.2.2 肼的分解平衡 41
4.2.3 肼分解推力器性能 43
4.3 电热增强型肼推力器性能与应用 45
4.3.1 应用任务特征 45
4.3.2 工质过热状态的推力器性能计算 46
4.3.3 电热增强肼推力器应用 48
参考文献 48
思考与练习题 48
第5章 气体放电导论 50
5.1 等离子体的概念 50
5.1.1 等离子体的定义 50
5.1.2 温度与动能 50
5.1.3 粒子在有势场中的空间分布 51
5.1.4 粒子的速度分布 52
5.1.5 等离子体鞘层 52
5.1.6 德拜屏蔽 53
5.1.7 等离子体参数 54
5.1.8 等离子体频率判据 54
5.2 热电离气体的电导率 55
5.2.1 气体热电离的平衡态 55
5.2.2 等离子体中的电子电流 56
5.2.3 电子的平均热运动速度 57
5.2.4 带电粒子碰撞截面的确定 57
5.2.5 电离度对电导率的影响 58
5.3 欧姆耗散引起的气体电弧不稳定性 60
5.4 气体成分及热物性参数随温度的变化 60
参考文献 62
思考与练习题 63
第6章 电弧推力器简化分析 64
6.1 基本假设 64
6.2 不流动气体中的狭长电弧 64
6.3 平行气流中的狭长电弧 67
6.4 电压与功率计算 71
6.5 推力计算 73
参考文献 75
思考与练习题 75
第7章 离子推力器 76
7.1 引言 76
7.2 工作原理 76
7.3 离子生成 77
7.3.1 电子轰击式电离室中的物理过程 77
7.3.2 损失的种类 79
7.3.3 电子扩散与约束 80
7.3.4 离子产生速率 82
7.4 离子提取和加速 84
7.4.1 离子提取 84
7.4.2 离子加速一维模型 86
7.4.3 减速栅极的影响 88
7.4.4 实际栅极提取能力 90
7.5 鞘层厚度与栅极孔尺寸估计 93
7.6 推进剂选择 94
参考文献 95
思考与练习题 96
第8章 电子轰击式放电室零维模型 97
8.1 引言 97
8.2 放电室内带电粒子流与功率平衡 98
8.3 离子与激发态原子的产率 101
8.4 电子的生存方程 102
8.5 离子在阳极壁上的约束 103
8.6 热化电子的数密度 104
8.7 束离子能量成本的计算 105
参考文献 106
思考与练习题 106
第9章 霍尔推力器 107
9.1 引言 107
9.2 构型与工作原理 108
9.3 推力能力 111
9.4 推力器效率 113
参考文献 116
思考与练习题 116
第10章 霍尔推力器稳态一维模型 117
10.1 控制方程 117
10.1.1 粒子数守恒方程 117
10.1.2 离子动量方程 118
10.1.3 电子动量方程 118
10.1.4 电子能量方程 119
10.2 方程求解 119
10.2.1 导数求解 119
10.2.2 边界条件 121
10.3 放电剖析 121
10.3.1 阳极前预鞘层与扩散区 122
10.3.2 向电离层的过渡 124
参考文献 127
思考与练习题 127
第11章 磁等离子体推力器 128
11.1 引言 128
11.2 正交电磁场中等离子体加速行为 129
11.2.1 等离子体受力 129
11.2.2 广义欧姆定律与霍尔参数 130
11.2.3 电磁功 131
11.2.4 磁场的产生 132
11.2.5 具有正交电磁场的等离子体加速器概念 133
11.3 自感应同轴构型推力器 134
11.3.1 推力器磁场构型 134
11.3.2 推力的近似计算 135
11.3.3 功率需求 138
参考文献 139
思考与练习题 140
第12章 磁等离子体推力器简化模型 141
12.1 加速通道的参数分布特征 141
12.2 耗散效应 143
12.3 稳定放电极限 144
12.4 效率 145
参考文献 146
思考与练习题 146
第13章 激光加热推力器 147
13.1 脉冲激光烧蚀固体工质推力器概念 147
13.2 连续激光加热流体工质推力器概念 148
13.3 工质对激光的吸收 149
13.3.1 等离子体对激光的吸收 149
13.3.2 激光能量在聚合物工质中的沉积 151
13.4 激光烧蚀固体的冲量发生宏观模型 152
13.5 连续激光加热流体工质推力器稳定性分析 153
13.5.1 简化分析模型 153
13.5.2 喷管壅塞条件下的稳定流动 155
参考文献 157
思考与练习题 157
附录A 球面三角函数恒等式 158
附录B 玻姆速度的简化推导 160
附录C 电子的扩散 162