您现在的位置:首页 > 知识库 > 电子信息 >图灵原版电子与电气工程系列 3G演进:HSPA与LTE 英文版 第2版 (瑞典)达勒蒙 等著 2010年版
图灵原版电子与电气工程系列 3G演进:HSPA与LTE 英文版 第2版 (瑞典)达勒蒙 等著 2010年版

图灵原版电子与电气工程系列 3G演进:HSPA与LTE 英文版 第2版 (瑞典)达勒蒙 等著 2010年版

资料大小: 173.47 MB
文档格式: PDF文档
资料语言: 简体中文
资料类别: 电子信息
更新日期: 2022-08-02
下载说明:
推荐信息: 原版   演进   英文   系列   电子

本地下载(30点)  备用下载(30点)

内容简介
图灵原版电子与电气工程系列 3G演进:HSPA与LTE 英文版 第2版
作者: (瑞典)达勒蒙 等著
出版时间:2010年版
丛编项: 图灵原版电子与电气工程系列
内容简介
  《3G演进:HSPA与LTE(英文版.第2版)》是爱立信研究院研发人员的经验之谈,描述了3G数字蜂窝系统如何演进成为先进的宽带移动接入技术,重点介绍了3G移动通信标准化开发演进路线、无线接入技术和接入网络的演进。书中内容分为5部分,清晰地勾勒出了3G演进技术取舍的诸多细节。《3G演进:HSPA与LTE(英文版.第2版)》是移动通信行业技术人员的必备参考指南,也是高等院校通信专业师生不可多得的教学参考书。
目录
Part Ⅰ: Introduction
1 Background of 3G evolution 3
1.1 History and background of 3G 3
1.1.1 Before 3G 3
1.1.2 Early 3G discussions 5
1.1.3 Research on 3G 6
1.1.4 3G standardization starts 7
1.2 Standardization 7
1.2.1 The standardization process 7
1.2.2 3GPP 9
1.2.3 IMT-2000 activities in ITU 11
1.3 Spectrum for 3G and systems beyond 3G 13
2 The motives behind the 3G evolution 15
2.1 Driving forces 15
2.1.1 Technology advancements 16
2.1.2 Services 17
2.1.3 Cost and performance 20
2.2 3G evolution: Two Radio Access Network approaches and an evolved core network 21
2.2.1 Radio Access Network evolution 21
2.2.2 An evolved core network: system architecture evolution 24
Part Ⅱ: Technologies for 3G Evolution
3 High data rates in mobile communication 29
3.1 High data rates: Fundamental constraints 29
3.1.1 High data rates in noise-limited scenarios 31
3.1.2 Higher data rates in interference-limited scenarios 33
3.2 Higher data rates within a limited bandwidth: Higher-order modulation 34
3.2.1 Higher-order modulation in combination with channel coding 35
3.2.2 Variations in instantaneous transmit power 36
3.3 Wider bandwidth including multi-carrier transmission 37
3.3.1 Multi-carrier transmission 40
4 OFDM transmission 43
4.1 Basic principles of OFDM 43
4.2 OFDM demodulation 46
4.3 OFDM implementation using IFFT/FFT processing 46
4.4 Cyclic-prefix insertion 48
4.5 Frequency-domain model of OFDM transmission 51
4.6 Channel estimation and reference symbols 52
4.7 Frequency diversity with OFDM: Importance of channel coding 53
4.8 Selection of basic OFDM parameters 55
4.8.1 OFDM subcarrier spacing 55
4.8.2 Number of subcarriers 57
4.8.3 Cyclic-prefix length 58
4.9 Variations in instantaneous transmission power 58
4.10 OFDM as a user-multiplexing and multiple-access scheme 59
4.11 Multi-cell broadcast/multicast transmission and OFDM 61
5 Wider-band ‘single-carrier’ transmission 65
5.1 Equalization against radio-channel frequency selectivity 65
5.1.1 Time-domain linear equalization 66
5.1.2 Frequency-domain equalization 68
5.1.3 Other equalizer strategies 71
5.2 Uplink FDMA with flexible bandwidth assignment 71
5.3 DFT-spread OFDM 73
5.3.1 Basic principles 74
5.3.2 DFTS-OFDM receiver 76
5.3.3 User multiplexing with DFTS-OFDM 77
5.3.4 Distributed DFTS-OFDM 78
6 Multi-antenna techniques 81
6.1 Multi-antenna configurations 81
6.2 Benefits of multi-antenna techniques 82
6.3 Multiple receive antennas 83
6.4 Multiple transmit antennas 88
6.4.1 Transmit-antenna diversity 89
6.4.2 Transmitter-side beam-forming 93
6.5 Spatial multiplexing 96
6.5.1 Basic principles 97
6.5.2 Pre-coder-based spatial multiplexing 100
6.5.3 Non-linear receiver processing 102
7 Scheduling, link adaptation and hybrid ARQ 105
7.1 Link adaptation: Power and rate control 106
7.2 Channel-dependent scheduling 107
7.2.1 Downlink scheduling 108
7.2.2 Uplink scheduling 112
7.2.3 Link adaptation and channel-dependent scheduling in the frequency domain 115
7.2.4 Acquiring on channel-state information 116
7.2.5 Traffic behavior and scheduling 117
7.3 Advanced retransmission schemes 118
7.4 Hybrid ARQ with soft combining 120
Part Ⅲ: HSPA
8 WCDMA evolution: HSPA and MBMS 127
8.1 WCDMA: Brief overview 129
8.1.1 Overall architecture 129
8.1.2 Physical layer 132
8.1.3 Resource handling and packet-data session 137
9 High-Speed Downlink Packet Access 139
9.1 Overview 139
9.1.1 Shared-channel transmission 139
9.1.2 Channel-dependent scheduling 140
9.1.3 Rate control and higher-order modulation 142
9.1.4 Hybrid ARQ with soft combining 142
9.1.5 Architecture 143
9.2 Details of HSDPA 144
9.2.1 HS-DSCH: Inclusion of features in WCDMA Release 5 144
9.2.2 MAC-hs and physical-layer processing 147
9.2.3 Scheduling 149
9.2.4 Rate control 150
9.2.5 Hybrid ARQ with soft combining 154
9.2.6 Data flow 157
9.2.7 Resource control for HS-DSCH 159
9.2.8 Mobility 160
9.2.9 UE categories 162
9.3 Finer details of HSDPA 162
9.3.1 Hybrid ARQ revisited: Physical-layer processing 162
9.3.2 Interleaving and constellation rearrangement 167
9.3.3 Hybrid ARQ revisited: Protocol operation 168
9.3.4 In-sequence delivery 170
9.3.5 MAC-hs header 172
9.3.6 CQI and other means to assess the downlink quality 174
9.3.7 Downlink control signaling: HS-SCCH 177
9.3.8 Downlink control signaling: F-DPCH 180
9.3.9 Uplink control signaling: HS-DPCCH 180
10 Enhanced Uplink 185
10.1 Overview 185
10.1.1 Scheduling 186
10.1.2 Hybrid ARQ with soft combining 188
10.1.3 Architecture 189
10.2 Details of Enhanced Uplink 190
10.2.1 MAC-e and physical layer processing 193
10.2.2 Scheduling 195
10.2.3 E-TFC selection 202
10.2.4 Hybrid ARQ with soft combining 203
10.2.5 Physical channel allocation 208
10.2.6 Power control 210
10.2.7 Data flow 211
10.2.8 Resource control for E-DCH 212
10.2.9 Mobility 213
10.2.10 UE categories 213
10.3 Finer details of Enhanced Uplink 214
10.3.1 Scheduling - the small print 214
10.3.2 Further details on hybrid ARQ operation 223
10.3.3 Control signaling 230
11 MBMS: Multimedia Broadcast Multicast Services 239
11.1 Overview 242
11.1.1 Macro-diversity 243
11.1.2 Application-level coding 245
11.2 Details of MBMS 246
11.2.1 MTCH 247
11.2.2 MCCH and MICH 247
11.2.3 MSCH 249
12 HSPA Evolution 251
12.1 MIMO 251
12.1.1 HSDPA-MIMO data transmission 252
12.1.2 Rate control for HSDPA-MIMO 256
12.1.3 Hybrid-ARQ with soft combining for HSDPA-MIMO 256
12.1.4 Control signaling for HSDPA-MIMO 257
12.1.5 UE capabilities 259
12.2 Higher-order modulation. 259
12.3 Continuous packet connectivity 260
12.3.1 DTX–reducing uplink overhead 261
12.3.2 DRX–reducing UE power consumption 264
12.3.3 HS-SCCH-less operation: downlink overhead reduction 265
12.3.4 Control signaling 267
12.4 Enhanced CELL_FACH operation 267
12.5 Layer 2 protocol enhancements 269
12.6 Advanced receivers 270
12.6.1 Advanced UE receivers specified in 3GPP 271
12.6.2 Receiver diversity (type 1) 271
12.6.3 Chip-level equalizers and similar receivers (type 2) 272
12.6.4 Combination with antenna diversity (type 3) 273
12.6.5 Combination with antenna diversity and interference cancellation (type 3i) 274
12.7 MBSFN operation 275
12.8 Conclusion 275
Part Ⅳ: LTE and SAE
13 LTE and SAE: Introduction and design targets 279
13.1 LTE design targets 280
13.1.1 Capabilities 281
13.1.2 System performance 282
13.1.3 Deployment-related aspects 283
13.1.4 Architecture and migration 285
13.1.5 Radio resource management 286
13.1.6 Complexity 286
13.1.7 General aspects 286
13.2 SAE design targets 287
14 LTE radio access: An overview 289
14.1 LTE transmission schemes: Downlink OFDM and uplink DFTS-OFDM/SC-FDMA 289
14.2 Channel-dependent scheduling and rate adaptation 291
14.2.1 Downlink scheduling 292
14.2.2 Uplink scheduling 292
14.2.3 Inter-cell interference coordination 293
14.3 Hybrid ARQ with soft combining 294
14.4 Multiple antenna support 294
14.5 Multicast and broadcast support 295
14.6 Spectrum flexibility 296
14.6.1 Flexibility in duplex arrangement 296
14.6.2 Flexibility in frequency-band-of-operation 297
14.6.3 Bandwidth flexibility 297
15 LTE radio interface architecture 299
15.1 Radio link control 301
15.2 Medium access control 302
15.2.1 Logical channels and transport channels 303
15.2.2 Scheduling 305
15.2.3 Hybrid ARQ with soft combining 308
15.3 Physical layer 311
15.4 Terminal states 314
15.5 Data flow 315
16 Downlink transmission scheme 317
16.1 Overall time-domain structure and duplex alternatives 317
16.2 The downlink physical resource 319
16.3 Downlink reference signals 324
16.3.1 Cell-specific downlink reference signals 325
16.3.2 UE-specific reference signals 328
16.4 Downlink L1/L2 control signaling 330
16.4.1 Physical Control Format Indicator Channel 332
16.4.2 Physical Hybrid-ARQ Indicator Channel 334
16.4.3 Physical Downlink Control Channel 338
16.4.4 Downlink scheduling assignment 340
16.4.5 Uplink scheduling grants 348
16.4.6 Power-control commands 352
16.4.7 PDCCH processing 352
16.4.8 Blind decoding of PDCCHs 357
16.5 Downlink transport-channel processing 361
16.5.1 CRC insertion per transport block 361
16.5.2 Code-block segmentation and per-code-block CRC insertion 362
16.5.3 Turbo coding 363
16.5.4 Rate-matching and physical-layer hybrid-ARQ functionality 365
16.5.5 Bit-level scrambling 366
16.5.6 Data modulation 366
16.5.7 Antenna mapping 367
16.5.8 Resource-block mapping 367
16.6 Multi-antenna transmission 371
16.6.1 Transmit diversity 372
16.6.2 Spatial multiplexing 373
16.6.3 General beam-forming 377
16.7 MBSFN transmission and MCH 378
17 Uplink transmission scheme 383
17.1 The uplink physical resource 383
17.2 Uplink reference signals 385
17.2.1 Uplink demodulation reference signals 385
17.2.2 Uplink sounding reference signals 393
17.3 Uplink L1/L2 control signaling 396
17.3.1 Uplink L1/L2 control signaling on PUCCH 398
17.3.2 Uplink L1/L2 control signaling on PUSCH 411
17.4 Uplink transport-channel processing 413
17.5 PUSCH frequency hopping 415
17.5.1 Hopping based on cell-specific hopping/mirroring patterns 416
17.5.2 Hopping based on explicit hopping information 418
18 LTE access procedures 421
18.1 Acquisition and cell search 421
18.1.1 Overview of LTE cell search 421
18.1.2 PSS structure 424
18.1.3 SSS structure 424
18.2 System information 425
18.2.1 MIB and BCH transmission 426
18.2.2 System-Information Blocks 429
18.3 Random access 432
18.3.1 Step 1: Random-access preamble transmission 434
18.3.2 Step 2: Random-access response 441
18.3.3 Step 3: Terminal identification 442
18.3.4 Step 4: Contention resolution 443
18.4 Paging 444
19 LTE transmission procedures 447
19.1 RLC and hybrid-ARQ protocol operation 447
19.1.1 Hybrid-ARQ with soft combining 448
19.1.2 Radio-link control 459
19.2 Scheduling and rate adaptation 465
19.2.1 Downlink scheduling 467
19.2.2 Uplink scheduling 470
19.2.3 Semi-persistent scheduling 476
19.2.4 Scheduling for half-duplex FDD 478
19.2.5 Channel-status reporting 479
19.3 Uplink power control 482
19.3.1 Power control for PUCCH 482
19.3.2 Power control for PUSCH 485
19.3.3 Power control for SRS 488
19.4 Discontinuous reception (DRX) 488
19.5 Uplink timing alignment 490
19.6 UE categories 495
20 Flexible bandwidth in LTE 497
20.1 Spectrum for LTE 497
20.1.1 Frequency bands for LTE 498
20.1.2 New frequency bands 501
20.2 Flexible spectrum use 502
20.3 Flexible channel bandwidth operation 503
20.4 Requirements to support flexible bandwidth 505
20.4.1 RF requirements for LTE 505
20.4.2 Regional requirements 506
20.4.3 BS transmitter requirements 507
20.4.4 BS receiver requirements 511
20.4.5 Terminal transmitter requirements 514
20.4.6 Terminal receiver requirements 515
21 System Architecture Evolution 517
21.1 Functional split between radio access network and core network 518
21.1.1 Functional split between WCDMA/HSPA radio access network and core network 518
21.1.2 Functional split between LTE RAN and core network 519
21.2 HSPA/WCDMA and LTE radio access network 520
21.2.1 WCDMA/HSPA radio access network 521
21.2.2 LTE radio access network 526
21.3 Core network architecture 528
21.3.1 GSM core network used for WCDMA/HSPA 529
21.3.2 The ‘SAE’ core network: The Evolved Packet Core 533
21.3.3 WCDMA/HSPA connected to Evolved Packet Core 536
21.3.4 Non-3GPP access connected to Evolved Packet Core 537
22 LTE-Advanced 539
22.1 IMT-2000 development 539
22.2 LTE-Advanced – The 3GPP candidate for IMT-Advanced 540
22.2.1 Fundamental requirements for LTE-Advanced 541
22.2.2 Extended requirements beyond ITU requirements 542
22.3 Technical components of LTE-Advanced 542
22.3.1 Wider bandwidth and carrier aggregation 543
22.3.2 Extended multi-antenna solutions 544
22.3.3 Advanced repeaters and relaying functionality 545
22.4 Conclusion 546
Part Ⅴ: Performance and Concluding Remarks
23 Performance of 3G evolution 549
23.1 Performance assessment 549
23.1.1 End-user perspective of performance 550
23.1.2 Operator perspective 552
23.2 Performance in terms of peak data rates 552
23.3 Performance evaluation of 3G evolution 553
23.3.1 Models and assumptions 553
23.3.2 Performance numbers for LTE with 5 MHz FDD carriers 555
23.4 Evaluation of LTE in 3GPP 557
23.4.1 LTE performance requirements 557
23.4.2 LTE performance evaluation 559
23.4.3 Performance of LTE with 20 MHz FDD carrier 560
23.5 Conclusion 560
24 Other wireless communications systems 563
24.1 UTRA TDD 563
24.2 TD-SCDMA (low chip rate UTRA TDD) 565
24.3 CDMA2000 566
24.3.1 CDMA2000 1x 567
24.3.2 1x EV-DO Rev 0 567
24.3.3 1x EV-DO Rev A 568
24.3.4 1x EV-DO Rev B 569
24.3.5 UMB (1x EV-DO Rev C) 571
24.4 GSM/EDGE 573
24.4.1 Objectives for the GSM/EDGE evolution 573
24.4.2 Dual-antenna terminals 575
24.4.3 Multi-carrier EDGE 575
24.4.4 Reduced TTI and fast feedback 576
24.4.5 Improved modulation and coding 577
24.4.6 Higher symbol rates 577
24.5 WiMAX (IEEE 802.16) 578
24.5.1 Spectrum, bandwidth options and duplexing arrangement 580
24.5.2 Scalable OFDMA 581
24.5.3 TDD frame structure 581
24.5.4 Modulation, coding and Hybrid ARQ 581
24.5.5 Quality-of-service handling 582
24.5.6 Mobility 583
24.5.7 Multi-antenna technologies 584
24.5.8 Fractional frequency reuse 584
24.5.9 Advanced Air Interface (IEEE 802.16m) 585
24.6 Mobile Broadband Wireless Access (IEEE 802.20) 586
24.7 Summary 588
25 Future evolution 589
25.1 IMT-Advanced 590
25.2 The research community 591
25.3 Standardization bodies 591
25.4 Concluding remarks 592
References 593
Index 603